Division - Rectangle Sections Method

If the problem is- $5 \longdiv { 3 3 0 }$
$5 \longdiv { 3 } 5$

- Ask "5 times what tens number gives an answer closest to 330 without going over?"

- $5 \times 60=300$ but $5 \times 70=350$, so 60 gives us the answer closest to 300 without going over.

30

30

- Draw a second rectangle section to the right of the first section.
- Write a plus sign after the 60 between the two sections.
- Write 30, the difference from the first section, inside the second section.
- Ask, " 5 times what number gives an answer closest to 30 without going over?"
- $5 \times 6=30$
- Write 6 at the top of the second section.
- Multiply 5 by 6 to get 30 .
- Write 30 below the existing 30.
- Subtract 30 from 30 to get 0 .
- Write the difference, 0 , below the second rectangle.
$60+6=66$
5

- Add the quotients from each section to find the quotient: $60+6=66$.
- So, $330 \div 5=66$.

Division- Expanded Notation Method

If the problem is- $\quad 5 \longdiv { 3 3 0 }$
$\begin{array}{r}5 \longdiv { 3 3 0 } \\ -300 \\ \hline\end{array}$

- Ask " 5 times what tens number gives an answer closest to 330 without going over"?
- Write 60 above the long-division sign.
- Multiply; $5 \times 60=300$.
- Write 300 under 330 .

$$
5 \begin{array}{|c}
\frac{60}{330} \\
\frac{-300}{30}
\end{array} \quad \cdot \text { Subtract: } 330-300=30 .
$$

6

$\frac{60}{3}$ 330 -300 30	- Ask, "5 times what number gives an answer closest to 30 without going over?"
	- Write 6 in the ones place above 60.

6	- Multiply: $5 \times 6=30$. - Write 30 under 30 , and then subtract. - $30-30=0$, so write 0 below the line.
60	
$5 \longdiv { 3 3 0 }$	
-300	
30	
-30	
0	

Division- Digit-by-Digit Method

If the problem is$5 \longdiv { 3 3 0 }$

	6

-30

- Ask, " 5 times what number gives an answer closest to 33 without going over?"
- Write 6 above the second 3 in 33.
- Multiply: $5 \times 6=30$.
- Write 30 under 33 .
$5 \longdiv { 3 } \begin{array} { c } { 6 } \\ { \cline { 1 - 3 } } \\ { \hline } \end{array}$
- Subtract: $33-30=3$.
$\frac{-30}{3}$

	6
	330

-30
30

- Bring down the ones-place zero from the dividend to make the number large enough to divide by 5 .
66

330
$-30 \downarrow$
30

- Ask, " 5 times what number gives an answer closest to 30 without going over?"
- Write 6 above the 3 in 30 .
- Multiply: $5 \times 6=30$.
- Subtract 30 from 30.
- The difference is 0 , so write 0 below the line.

Division- Partial Quotients Method

If the problem is$5 \longdiv { 3 3 0 }$

- What multiple of ten should we try first?
- 60; $5 \times 60=300$
- Write 60 to the right of the long line.
- We multiply: $5 \times 60=300$ and write 300 under the dividend, making sure to line up the place value.

5 | 330 |
| :---: |
| $\frac{-300}{30}$ |

- Subtract: 330-300=30.
- Write 30 under 300 , making sure to line up the place value.

- Ask, "How many 5s are in 30?"
- $6: 5 \times 6=30$.
- Write 6 to the right of the long line.
- We multiply: $5 \times 6=30$ and write 30 under the left-over dividend, making sure to line up the place value.

5 | 330 | |
| ---: | ---: |
| $\frac{-300}{30}$ | 60 |
| $\frac{-30}{0}$ | +6 |
| | +66 |

- Subtract: 30-30=0.
- Write the 0 under the 30 , making sure to line up the place value.
- Add the partial quotients to find the quotient.

